If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-6t-17=0
a = 3; b = -6; c = -17;
Δ = b2-4ac
Δ = -62-4·3·(-17)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-4\sqrt{15}}{2*3}=\frac{6-4\sqrt{15}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+4\sqrt{15}}{2*3}=\frac{6+4\sqrt{15}}{6} $
| 4x-6=10x-30 | | 7(5y)=9 | | X(x-2)+x+(2x+8)+10=60 | | 7(4x–1)=49 | | x/60=x/75 | | 5n(7n+8)=0 | | -7w+5=12 | | 0=96t-12t^2 | | 710–35x=570–25x | | 3(2x-3)=(4x-5) | | y=19/5+1= | | 6.8/17=2/x | | 1.16(z+5)-13.6=3.8 | | 3(2x-3)=4x-(5) | | y=19/5= | | 3/4n-6=9 | | f(-3)=-2(-3)^2-5(-3)+4 | | A+2a+2a=20 | | 49+x=64 | | (8/7)+(7m/3)=(80/21) | | 44+0.06x=35+0.09x | | 10-1/4x=7 | | 3.2x=19.22 | | f(-3)=-2(-3)-5(-3)+4 | | –5f=–9−4f | | 3x^2+8=-19 | | 22=r=-18 | | 6x+5x=4+3x | | (r^2+3r-10)=0 | | 4x+2=-5+5x | | 3x+187=6x+238 | | 10z+6=-34 |